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ALMOST COTANGENT MANIFOLDS

R. S. CLARK & D. S. GOEL

1. The geometry of the cotangent manifold 7*.# of a differentiable mani-
fold .# has been studied by K. Yano and E. M. Patterson [4], [5], [6]. Some
of their results can be extended to a manifold M of dimension 2r carrying a
G-structure whose group consists of all 2rn X 2n matrices of the form

(.1 [g (Aq‘)‘]

where A ¢ GL(R*) and A‘B = B’A. Such a structure is an almost cotangent
structure, and such a manifold M is an almost cotangent manifold (M. R.
Bruckheimer [1]).

Example 1.1. Suppose that .# is a manifold of dimension n, and that
z: T*.#4 — 4 is the natural projection which takes a covector at me .# to
the point m. Any function f in .# can be lifted to a function fex in T%.# but
we shall denote it by the same symbol f. If x is a chart of .# with domain V,
we can define a standard chart (x,y) of T*.# with domain z7*¥V. Two such
charts (x, y), (%, ) with intersecting domains are related by a change of coor-
dinates whose Jacobian matrix has the form (1.1) with

Al 2zc d
(1.2) : A=[°x ] B:[_a_x_aL-c],
ox® ox%gx® gx°
where a, b,c,d =1, - - -, n. The natural moving frames associated with these

charts therefore define an almost cotangent structure on T*.#.
Suppose that M is any almost cotangent manifold. We define a 2-form » on
M by specifying its components to be

i

relative to any adapted frame of M. w determines an almost symplectic struc-
ture on M to which the given almost cotangent structure is subordinate. If
@, ---,6") is any adapted moving coframe of M, then locally

w=0"A6""  (@a=1,-.-.,n).
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The 1-forms ¢', - - -, 6™ form a local cobasis for an n-dimensional distribution
2 on M. This determines a G-structure on M to which the given almost cotan-
gent structure is subordinate. Its group consists of the 2n X 2n matrices of the
form

e

where 4, C e GL(R").

Conversely, we have ,

Proposition 1.1. If an n dimensional distribution and an almost symplectic
structure on a 2n-dimensional manifold have a common subordinate structure,
then this is an almost cotangent structure.

Proof. The group of the G-structure defined by the distribution consists
of 2n X 2n matrices of the form (1.4). If such a matrix also belongs to the
symplectic group, then

[A‘ B‘][O —I] [A O] _ [O —1]
o cdlr ollp cl™ L1 o)’
which implies that 4’°B = B’A4 and C = (4~Y)*. Consequently such a matrix
is of the form (1.1). q.e.d.

Let M be a differentiable manifold carrying an almost symplectic structure
determined by a 2-form w. Given any vector field X in M, we use o to define
a l-form Y — o(X,Y) in M with the same domain. Since w is nonsingular, it
maps independent vector fields to independent 1-forms.

Proposition 1.2. An n-dimensional distribution 9 and an almost symplec-
tic structure on a 2n-dimensional manifold M admit a common subordinate
structure iff w maps each basis of 9 to a cobasis of 2.

Proof. Suppose that the two structures have a common subordinate struc-
ture. Choose any moving frame (X, - - -, X,,) adapted for this structure, and
let (¢, - - -, 6*) be the dual moving coframe. Then X,., (a=1,-.--,n) is a
local basis for &, and 6*(a = 1, - - -, n) is a local cobasis. w maps the vector
field X,., to the 1-form * defined by

wa(Xi) = w(Xa-:-n,Xi) = 60,2' (l - 19 - ',2”) »

and so ¥ = 4% More generally, » maps any local basis Y, ., (a=1,---,n)
for 2 to a cobasis, since we can choose the moving frame so that locally

Yb+7z = agXa+n det & #* 0.

This maps to a%6* which is a cobasis for 2.

Conversely, suppose that w maps each basis for £ to a cobasis. Choose any
moving frame (Y, ---,Y,,) which is adapted for 2. The vector fields
Y,..{la=1,---,n) form a basis for 2, and so the 1-forms
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Y_’(U(Ya+nay) (a= 17""”)

form a cobasis. Consequently w(Y,,,,Y,.,) = 0, and we may write the
matrix

(Vs Y) = [g ‘Q‘] ,

0
where P = —P, and det Q = 0. We now construct a new moving frame
A 0
[Xp "'>X27L] = [Y1> ,an][B C] )

where A = Q7', B = $(Q~")'PQ~!,C = I. This too is adapted for the distri-
bution, and also for the almost symplectic structure since

- [ 25 - 90 1)

Since we can find such a moving frame at each point of M, the two structures
have a common subordinate structure.

2. Suppose we are given two G-structures with a common subordinate
structure on a manifold M. If the subordinate structure is integrable, then so
are the given structures. The converse is not necessarily true, but in the case
of an almost cotangent structure we have

Proposition 2.1. An almost cotangent structure is integrable iff the under-
lying distribution and almost symplectic structure are both integrable.

Proof. Suppose that the underlying structures are both integrable. Choose
any point m e M. There exists a chart x at m adapted for the distribution.
Choose any moving coframe ¢ = (¢', - - -, ¢**) at m adapted for the almost
cotangent structure. Since it is adapted for the distribution,

¢¢ = A%dx® detA =0 (a,b=1,.--,n).
The moving coframe # at m defined by
6° = dx® | getn = Abghtn
is adapted for the almost cotangent structure. Suppose that
ge7 " = afdx® + prdx®*™ .

Since the almost symplectic structure is integrable, the canonical 2-form w =
g* N\ 6**™* is closed, and so
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dx® N\ {(ﬁdxc + jm_gdx”") A\ dx?
axC axC'f‘ﬂ.

+ <aﬁg dxe o+ 985 dxcM) A dxm} —0.

ax* oxer™

One consequence of this is that

o _ op
axc+n axb+n
It follows that the equations
5He )
o P

admit differentiable solution H%(x’,- - -, x**) on a neighborhood of m. We use
them to construct a new chart y at m by defining

ya. = x% , yu+7r. — Ha.(xl’ .. .,x2n) B
In terms of this chart
00. — dya s 0a+n — c_x‘;dyb _|_ dya+n ,

where @f = of — dH*/ox®.
Using these new coordinates, the condition dw = O implies that

ay° oy* N A%

)

2.2)
( ayC+7Z

@ —a)=0.

Consider the equations

AF® b
gF* _ GF o _ g

P~ “a:a @ .
ay ay

Equations (2.2) show that the right-hand side depends only on ), - - -, ¥*, and
equations (2.1) show that differentiable solutions Fe(y!, - - -, y®) exist at m. We
define functions

Za:yaz Z“'”:ya+n—f'Fa(y1;"':yn) (a:l,---,n).

Since
dz® = dy* = 6%,
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dza+n — dya-:-n _|_ aFa dyb — 00,1—72 _'_ (aF _ &g)ﬁb ,
oy° oy°
these functions z!, - - -, z?" form a chart z at m. This chart is adapted for the

almost cotangent structure since 9F®/dy® — @&¢ is symmetric in a, b.

3. S. S. Chern [2] defined a structure tensor for any given G-structure on
a manifold M. This is determined by specifying its components relative to any
adapted moving coframe § with domain U.

Let Z be the subspace of V' = hom (R® A R", R") consisting of elements
p such that

ou, v) = (Suyv — (Svu

for all u,v e R*, where L(G) is the Lie algebra of G and where Se
hom (R*, L(G)). If matrices W, (A4 = 1, - - -, r) form a basis for L{(G), then the
elements p € Z have components

ol = &5V % — E:W 5,

where i,j,k =1, -.-,n and &4 ¢ R. We have to define a subspace of VV com-
plementary to Z. Given y € V we impose sufficient linear conditionsony + p,
where p € Z, so that p is determined uniquely. Then 7 4 p lies in a subspace
W of V complementary to Z and the canonical projection Z: V — W is given
by r—r+ e

Suppose that

bt = 1767 A 6F .

The coefficients 7%, determine a function y on U with values in V. The
structure tensor has components C = A¢ 7 relative to the moving coframe 4.
Suppose that M is an almost cotangent manifold, and let § be an adapted
moving coframe. We first calculate the structure tensor for the underlying
almost symplectic structure. The Lie algebra of the symplectic group consists

()I 2]1 X 2]1 1atl 1CES
B —A

where the n X n matrices B, C are symmetric. This admits a basis consisting
of matrices

(W% - WI()Z——T;L)‘ (W%+n + Wi);n)’ (W(lf+n + Wz.—:-n)’ (aa b = 1; tt n),

where the matrix W4 (,j = 1, - - -, 2n) has entry 1 in the (i, )th position and
zeros elsewhere. A straightforward calculation shows that we can define p so
that C = y L+ p satisfies the linear conditions
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Cgc:O, Cg:;zlc-é-n:o:
+ b — p—
Cgc:n + Ca+c7:.-n - O ’ Cg c+n + Cg a+n O s
+n bin + _— [ — ¢
Cg'c "= Cca.n _ Cg,bn > Cg'+n c+n T Cc+n a+n Ca+n b+n 2

and that these conditions determine p uniquely. The components C of the struc-
ture tensor relative to the coframe 4 are given by

(3.1 Cee=0, Ciren=0,

(3.2) Gt = 308 et, — ri i — 130)
(3.3 Chevn = 3% con — 7% aun + 1850 cond
(3.4) Corm = 3Gu™ + rle™ + 7359

(3.5) Corincin = 3 5uncon + Toonasn + Tonpad) -

Proposition 3.1. The underlying almost symplectic structure on M is inte-
grable iff its structure tensor is zero.

Proof. The structure is integrable if dw = 0, and this condition is satisfied
locally if

507 N 68 N 6% — Lm0t NG N F =0
Equations (3.2), ..., (3.5) show that this is true if C = 0. q.e.d.
We next calculate the structure tensor for the underlying distribution on the

almost cotangent manifold M. The Lie algebra for the distribution group con-
sists of the 2xn X 2n matrices
[5 ol
B DI’

We, Wy, Wiin .

and it admits a basis

In this case we can define p in just one way so that C = y 4 p satisfies the
linear conditions

Czk = O E Cg:;LCfn = O *

The components C of the structure tensor relative to the coframe ¢ are then
all zero except

(36) C?m ctn = Tg+n c+n *
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Propesition 3.2. The underlying distribution on M is integrable iff its struc-
ture tensor is zero.

Proof. @', -..,6" is alocal cobasis for the distribution. If C = 0, it follows
from equation (3.6) that

dg* = 350" + 215 £V N E°

and Frobenius Theorem shows that the distribution is integrable. g.e.d.

Finally we calculate the structure tensor for the almost cotangent structure
on M. The Lie algebra for the almost cotangent group consists of the 21 X 2n
matrices

5

where the n X n matrix B is symmetric. It admits a basis consisting of the
matrices

(Wi — W), (Wi + W) .

We can define p in just one way so that C = y + p satisfies the linear
conditions

a __ a+ —
Cbc_01 Cbé;:c+n‘—07
+ 4 —_ —
Cg cZn + Ca“‘c’:-n - 0 H Cl? c+7 + C% a+n T 0 ’
- b+m +
ot =Cot=Cg" .

The components C of the structure tensor relative to the coframe & are then
given by equations (3.1), (3.2), (3.3), (3.4), (3.6). From this we deduce

Proposition 3.3. The structure tensor of an almost cotangent structure is
zero iff the structure tensors of the underlying distribution and almost symplec-
tic structure are both zero.

Propositions 2.1, 3.1, 3.2, 3.3 now lead to

Proposition 3.4. An almost cotangent structure is integrable iff its structure
tensor is zero.

Any G-structure is said to be almost transitive if its structure tensor is con-
stant. If the group G includes an element «l, where the real number « is not
1, such a structure tensor is necessarily zero. Since the almost cotangent group
includes the element — I, we have

Proposition 3.5. A4n almost cotangent structure is almost transitive iff it
is integrable.

4. A nondegenerate Riemannian metric S on a manifold M defines a class
of conjugate structures on M. S is said to be relafed to a given G-structure on
M if one of these conjugate structures has a common subordinate structure
with the given G-structure.
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Among the conjugate structures is included one O;(R™) structure, the com-
ponents of S relative to any adapted frame of this structure being

o ]
O _In—s )

If this O,(R™) structure has a common subordinate structure with the given
G-structure, then the metric S is called a G-metric.

A positive-definite G-metric on an almost cotangent manifold will be called
an almost cotangent metric. Such metrics are studied in this section.

Lemma 4.1. If S is a positive-definite Riemannian metric on an almost
cotangent manifold M, then there exists an adapted moving frame p at any given
point m € M relative to which S has components of the form

!

Proof. Choose any adapted moving frame ¢ at m, and suppose that, rela-
tive to ¢, S has components

(4.2) [’Q’ t 1%] .

Because this matrix is positive-definite, we can choose a differentiable function
A at m with values in GL(R"?) such that 44! = R. We then define

B = —3[0(4™) + R7QA] .

The moving frame

o=el5

satisfies our requirements, since it is adapted for the almost cotangent struc-
ture on M and the components of S relative to p

P | P [

reduce to the form (4.1). q.e.d.

A Riemannian metric on a manifold determines a scalar product on each
tangent space and each cotangent space. We denote both of these by the same
symbol (.).

Proposition 4.2. A positive-definite Riemannian metric S on an almost
cotangent manifold M is an almost cotangent metric iff
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(4.3 (0X-0Y)=(X-Y)

for all vector fields X and Y in M, where w is the canonical 2-form on M.
Proof. The condition (4.3) can be expressed in tensor form as

(4.4) 0= —SuiS .

If S is an almost cotangent metric, then at any given point of M there is a frame
relative to which § and » have components

[I 0] [0 —I]
o 1II'kh o
respectively. The tensor relation (4.4) is therefore satisfied on M.
Conversely, suppose that (4.4) is satisfied. Choose a special adapted moving

frame p (as defined in Lemma 4.1) at a given point m € M. Evaluating the rela-
tion (4.4) in terms of p shows that
P I PO [ R
1 ol Ll—-p dl—1 oll—p 11’
It follows that b = 0 and a = I. Consequently p is adapted for the O(R*™)
structure defined by S as well as for the almost cotangent structure. These two
structures therefore have a common subordinate structure. g.e.d.
That almost cotangent metrics exist on any paracompact almost cotangent
manifold follows from
Proposition 4.3. Any given positive-definite Riemannian metric S on an
almost cotangent manifold M determines an almost cotangent metric on M.
Proof. Lemma 4.1 shows that there exists a set of special adapted moving
frames for the almost cotangent structure whose domains cover M and for

which § has components (4.1). Any two such moving frames p, g with inter-
secting domains U,U are related by

p=e [; (A(il)f]

where A'B = B'A4. Since the components of S relative to 7 are given on

UNTUby
o 218 G

it follows that 4 € O(R®) and B = 0. Consequently the special adapted mov-
ing frames also define an O(R*")-structure on M. The associated metric on M
is an almost cotangent metric. g.e.d.
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We continue with the problem of constructing an almost cotangent metric.
An easy calculation using Proposition 4.2 leads to

Propositon 4.4. A positive-definite Riemannian metric on an almost cotan-
gent manifold M is an almost cotangent metric iff its components relative to
any adapted frame of M are of the form

“.5) AR

where R is a positive-definite n X n matrix and RQ is symmetric.

This proposition shows that if ¢ is an adapted moving frame of M with
domain U we can construct an almost cotangent metric on U when we are
given differentiable n X n matrix-valued functions Q, R on U such that R is
positive-definite and RQ is symmetric. If & is an adapted moving frame on U

such that
o=dd O]
B (A—l)t

with corresponding functions Q, R, and if
(4.6) RA* = AR, QAt = A'Q + B'R,

then the two metrics agree on U N U. We use this result in

Example 4.1. Starting from a positive-definite metric ¢ on a manifold .#
we construct an almost cotangent metric on 7*.#. If x is a chart of .#, the
moving frame ¢ associated with the standard chart (x, y) is adapted for the
almost cotangent structure on 7*.#. Suppose that g*® are the components of
g"* associated with the chart x, and that I'¢, are the corresponding Christoffel
symbols. We use these to define matrix-valued functions

0 =[—gléy,l, R = [g*]

on the domain U of ¢. Since R is positive-definite and RQ is symmetric, we
have an almost cotangent metric on U with components (4.5) relative tos. The
corresponding functions O, R on U are related to O, R by equations (4.6),
where A and B are defined in (1.2).

5. An almost cotangent metric is an example of a related metric. We now
describe another related metric on an almost cotangent manifold M.

A Riemannian metric on M such that

(i) (X -0Y) = —(X.Y) for all vector fields X, Y in M,

(i) (X,Y) = O for all vector fields X, Y in M tangent to the distribution 2
will be said to be skew invariant. That such metrics always exist on a para-
compact almost cotangent manifold follows from

Proposition 5.1. Any given positive-definite Riemannian metric S on an
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almost cotangent manifold M determines a skew invarient metric § on M.

Proof. Suppose that ¢ is any adapted moving frame of M, and that, rela-
tive to ¢, S has components (4.2). We define a (2,0) tensor field locally by tak-
ing its components relative to ¢ to be

e o )

It is easy to verify that such local fields agree on the intersection of their do-
mains, and so they define a (2,0) tensor field S on M. § is a skew invariant
metric.

Example 5.1. We use the above proposition to construct a skew invariant
metric S on T*.# starting from the almost cotangent metric S described in
Example 4.1. The components of S relative to the natural moving frame asso-
ciated with the chart (x, ¥) reduce to

[_2Fg.byc I]
I ol

Consequently S is the Riemann extension of the Riemannian connection of the
metric g on .4 as defined by E. M. Patterson and A. G. Walker [3]. The Rie-
mannian connection may be replaced by any symmetric linear connection on
M.

Not every skew invariant metric arises in the way we have described in Pro-
position 5.1, and in general we have

Proposition 5.2. A4 Riemannian metric on an almost cotangent manifold
is skew invariant iff its components related to every adapted frame are of the
form

59

where P is a symmetric n X nmatrix, Q° = I and QPQ* = P.

Proof. A metric S has components (4.2) relative to an adapted frame. Sup-
pose that S is skew invariant. Condition (ii) implies that R = 0, and then con-
dition (i) implies that

o L7 olle S1=1-7

Q¢ olL—r olLgr 0 —I ol

This shows that Q% = I and QPQ’ = P. The converse result is proved in a
similar way. q.e.d.

Next we show that a skew invariant metric on a connected almost cotangent
manifold is a related metric.



120 R. S. CLARK & D. S. GOEL

Lemma 5.3. If Sis a skew invariant metric on an almost cotangent manifold
M, then there exists an adapted moving frame p at any given poini m € M rela-
tive to which S has components

[x ol
K 0

where K is some diagonal n X n matrix of the form
diag{lala "'717—17_19"'7_1} .

Proof. Let ¢ be an adapted moving frame at 7, and suppose that S has
components (5.1) relative to ¢. The differentiable matrix-valued function Q
satisfies @° = I, and so we can find a differentiable function 4 on some con-
nected neighborhood U of m such that AQA~' = K where K = diag{1,1,
-++, —1}. If we define B on U by PA* + 20B = O, then, since OPQ* = P,

p:g[A‘ 0 ]
B A

is also an adapted moving frame at m. It has the property required. q.e.d.

As a simple consequence of the above lemma we have

Proposition 5.4. Every skew invariant metric on a 2n-dimensional almost
cotangent manifold has signature (n, n).

Proposition 5.5. A4ny skew invariant metric on a connected almost cotan-
gent manifold is related to the almost cotangent structure.

Proof. Suppose that p, g are two moving frames as described in Lemma 5.3
and that the corresponding components of the metric S are

[O K] [O K]

K ol'lk ol

Suppose that the domains of these moving frames intersect, and that
— [A 0 ]
P=rlg (41

Then A-'KA = K. Since the matrices K, X have the same trace, they are equal.

Because M is connected, we can find a set of such adapted moving frames p

whose domains cover M and with respect to which the components of S are the

same. It follows that these moving frames are also adapted to one of the G-

structures defined by S.

6. Suppose that a manifold M carries a G-structure. A connection on the
adapted frame bundle P(M, G) determines a linear connection on M called a
G-connection. Any linear connection on M is a G-connection iff the local con-
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nection forms which correspond to adapted moving frames of M have values
in the Lie algebra of G. It is sufficient if this connection is satisfied for a set of
adapted moving frames whose domains cover M. When M is an almost cotan-
gent manifold this leads to

Proposition 6.1. A linear connection on an almost cotangent manifold is
an almost cotangent connection iff it is a connection for both the underlying
distribution and almost symplectic structure.

Since the Lie algebra of the almost cotangent group consists of the 2n X 2n
matrices of the form (3.7), we deduce

Proposition 6.2. A linear connection on an almost cotangent manifold is
an almost cotangent connection iff its coefficients relative to each adapted mov-
ing coframe satisfy the conditions

F?c+n=O$ F?CZ_F§+:+71, F}'anfg—an,

where a,c = 1,---,n;j=1,---,2n.

Example 6.1. Let I be any symmetric linear connection on a manifold .#.
The Riemann extension of /' (Example 5.1) is a metric on T7*.#. The
Riemannian connection 7 of this metric is called the complete lift of V. K.
Yano and E. M. Patterson [5] show that its components relative to any
standard chart (x, y) are given by

[y, =1T4%,, Iy een=T%c=18ncen=0,
Fion = yo( e — S _ Ohe ore 1y,),
Iy, = =I5, Itiz.=—Th, I'{iren=20,
where a,b,¢,d,e = 1, - - -, n. It follows that if  has zero curvature, then

is an almost cotangent connection.

Example 6.2. Starting from a symmetric connection ¥V on .#, the same
authors [6] have defined another connection 7 on T*.# called the horizontal
lift of /. Its components relative to any standard chart (x, y) only differ from
the corresponding components of the complete lift by

ol'e,

Fiev=yo—2e 4 Te T3+ TL TS

ox?

V is therefore always an almost cotangent connection.
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